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Abstract

Unsteady 3-D computational fluid dynamics (CFD) results can be

very large. Some recent solutions exceed 100 gigabytes. Visualiza-

tion techniques that access the entire data set will, therefor, be

excruciatingly slow. We show that particle tracing in vector fields
calculated from disk resident solutions can be accomplished in

O(number-of-particles) time, i.e., visualization time is independent

of solution size. This is accomplished using memory mapped files

to avoid unnecessary disk IO, and lazy evaluation of calculated vec-

tor fields to avoid unnecessary CPU operations. A C++ class hierar-

chy implements lazy evaluation such that visualization algorithms
are unaware that the vector field is not stored in memory. A numer-

ical experiment conducted on two solutions differing in size by a

factor of 100 showed that particle tracing times varied by only 10-

30%. Other visualization techniques that do not access the entire

solution should also benefit from memory mapping and lazy evalu-

ation.
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Abstract

Unsteady 3-D computational fluid dynamics (CFD) results can be very large. Some recent solu-
tions exceed 100 gigabytes. Visualization techniques that access the entire data set will, therefor,

be excruciatingly slow. We show that particle tracing in vector fields calculated from disk resident

solutions can be accomplished in O(number-of-particles) time, i.e., visualization time is indepen-

dent of solution size. This is accomplished using memory mapped files to avoid unnecessary disk

IO, and lazy evaluation of calculated vector fields to avoid unnecessary CPU operations. A C++

class hierarchy implements lazy evaluation such that visualization algorithms are unaware that the

vector field is not stored in memory. A numerical experiment conducted on two solutions differing

in size by a factor of 100 showed that particle tracing times varied by only 10-30%. Other visual-

ization techniques that do not access the entire solution should also benefit from memory mapping

and lazy evaluation.

Introduction

CFD scientists use flow solver software to generate vector and scalar fields describing fluid flow.

These fields are called the solution. The solution is computed on discretely sampled spatial grids

with sufficient sample points, called nodes, to capture the complex fluid physics. Capturing ever

more detailed physics requires more and more nodes, increasing storage requirements. None-the-

less, a number of current visualization systems can readily visualize static 3-D numeric solutions

[Bancroftg0, Buning85, Legenskyg0, SGI92, Upson89, Wavefront91 ]. However, when the time

dimension is added the resulting explosion in data set size severely degrades the interactive

response of existing systems.

Unsteady solutions consist of a series of steady state solutions called time steps. Adding the time

dimension dramatically increases solution size. For example, recent unsteady solutions at NAS 2

are 10-100 gigabytes [Globus92]. Obviously, the largest unsteady solutions are much larger than

the RAM available on workstations or even supercomputers. This will be true for the foreseeable

future since solvers need only hold one time step in memory at any one time, while interactive

visualization software must navigate rapidly through tens, hundreds, or even thousands of time

steps under user control. Thus, time dependent visualization requirements will continue to vastly

exceed available memory for the foreseeable future.

Visualizing very large solutions is difficult because the time to read data from disk into memory is

O(solution-size). Moreover, in many cases the vector field of interest is not output by the solver

and must be calculated from solver outputs. Such fields may be called derived fields. For example,

CFD solvers used at NAS typically output density, momentum, and energy. Scientists frequently

1. This work is supported through NASA contract NAS2-12961.
2. The NAS (Numerical Aerodynamic Simulation) Systems Division at NASA Ames Research Center is a

leading supercomputer facility dedicated to the study of computational aerosciences, particularly CFD

[Bailey86].



wantparticletracesin thevelocity or vorticity fields. Calculating derived fields is O(solution-size).

Fortunately, some important visualization techniques typically access a very small portion of the

solution domain. Consider particle tracing. An individual particle trace is a one dimensional path

through a four dimensional solution (x,y,z and time). The data accessed to implement one step of

one particle trace is O(1); i.e., independent of solution size. In fact, in the common case where the

vector field is precalculated and memory resident, particle tracing time is well known to be O(num-

ber-of-particles) and independent of solution size.

Combining two techniques allows O(number-of-particles) particle tracing time on disk resident

solutions: 1. UNIX memory mapped files to avoid unnecessary disk IO; 2. lazy evaluation [Abel-

son85] to avoid unnecessary calculation of derived vector fields. Using these techniques (described

below), we have demonstrated O(number-of-nodes-required) disk IO times and O(number-of-par-

ticles) CPU times when tracing particles in vector fields derived from very large, disk resident,

unsteady CFD solutions. Needless to say, we achieved dramatic performance improvements over

conventional techniques - one to two orders of magnitude.

Prior Work

Kelick90 mentions lazy evaluation of derived fields using C++, but gives no performance or imple-

mentation details. At our suggestion, Lane93 used lazy evaluation, but not memory mapping, to

trace particles in the velocity field derived from large unsteady CFD solutions. Lane93 achieved a

factor of five improvement in CPU time. Hultquist92 mentions memory mapping for steady state

visualization. Eliasson89 uses lazy evaluation of computational space vector fields to compute

streamlines.

Description of Technique

Memory Mapping

The first problem is to read from disk into memory only those solution nodes necessary to interpo-

late the vector field at particle positions. To do this precisely requires an inordinate number of slow

disk seeks and some very complex software. Fortunately, the virtual memory systems available on

most workstations is designed to manage disk to memory transfers of data as needed. What we need

is a way to tell the virtual memory system to treat a file as part of a process' virtual memory space.

The UNIX function mmap0 does exactly that [UNIX]. Memory then caches the disk file as trans-

parently as the CPU cache in a RISC processor caches main memory. Using mmap0 makes disk

IO time O(number-of-nodes-in-cells-containing-particles), modified by buffering effects.

Using memory mapped files can lead to management problems when some files are immediately

read into memory and other files are memory mapped. Globus93 shows how to transparently

access data allocated in a number of different ways, including memory mapping, by using a C++

class hierarchy to encapsulate blocks of data.

Lazy Evaluation

Avoiding unnecessary disk IO is not enough. If derived fields are calculated for the entire domain,

then visualization time will be O(solution-size). Lazy evaluation involves calculating the vector

field only at nodes actually accessed by the tracing algorithm. We accomplish this using a C++

class hierarchy representing fields with virtual member functions for accessing the field data. Visu-

alization algorithms using these classes are unaware that the vector field accessed may not be



stored in memory.

To hide a field's implementation (stored or lazy evaluation) from tracing algorithms, we note that

such algorithms need the value of the vector field at any point; and need nothing else from a field.

Unless this point happens to lie on a node, the value of the vector field must be interpolated from

nearby nodes. The interpolation code is identical for stored and lazy fields and can be placed in a
common base class, but the mechanism for determining the vector at a node differs and requires

two derived classes. Thus, returning the vector value of the field at a node must be a virtual member

function. When a field is stored, the member function returns the value stored in memory. When

the field is lazy evaluated, the member function gets the values stored in the solution, performs the

appropriate computation, and returns the result. The C++ virtual member function mechanism

chooses the right implementation at run time.

A sketch of code to trace a panicle in a regular 3-D field using stored or lazy fields follows. Many

details are left out. In particular, the fields we used in our experiment were multiple-zone, iblanked,

curvilinear grids, not the regular grid in this code; and we used a modified RK2 rather than Euler

integration. This does not change the fundamentals.

Assume that class vector 1 is appropriately implemented and that the solution is stored in a

field object. Panicle trace code might look something like this:

// one Euler integration step

vector oneStep(const vector& p, const field& f, float deltaT)

{ return p + (deltaT * f.interpolate(p)) ; }

The field classes might look like:

class field {

public :
virtual vector nodeValue(

vector interpolate( const

{

int i, j,k =

vector v =

};

return v;

int i, int j, int k ) = 0;

vector& p )

integer parts of p

// interpolate using

// nodeValue(i+l,j,k),

// nodeValue(i,j+l,k), etc.

// and fractional parts of

nodeValue(i, j,k) ,

P

class precomputedField : public field {

float data[isize] [jsize] [ksize] [vectorSize];

public:

vector nodeValue( int i, int j, int k )

{ return vector( data[i] [j] [k] );

};

1. Code fragments are in Courier font.



class lazyField : public field

const field* Solution;

public:

lazyField( const solution* s

vector nodeValue( int i, int

{

// lazy evaluation

return desiredOperation(

}

};

) { Solution = s; }

j, int k )

Solution.nodeValue (i, j,k) ) ;

vector desiredOperations( const vector& solutionVector )

{ // calculate and return the vector desired }

Experimental Results

Several experiments were conducted by tracing a number of particles through two solutions with

different sizes. The large solution [Atwood92] contained about 3.3 million nodes per time step. The

smaller solution contained about 32 thousand nodes per time step. Both solutions were defined on

multiple 3-D curvilinear, overlapping, iblanked grids [Walatka92]. The velocity field was calcu-

lated from density and momentum values in the solutions. In addition, the tracing method trans-

formed the velocity field from physical to computational space [see Eliasson89]. Solutions were

memory mapped and calculations used the lazy evaluation technique. Each solution contained 15

time steps. Each solution node contained 20 bytes per time step. For each experiment the number

of particles traced was constant and the number of cells spanned by initial particle locations was
the same.

All software was implemented in C++ running inside SuperGlue [Hultquist92], a visualization

environment based on Scheme (a dialect of LISP). The software ran on an SGI 320 VGX with 64

Mbytes of main memory. Because the SGI did not have sufficient disk space for the large solution,

all solution data resided on a CONVEX accessed via NFS over Ethernet.

Disk access via NFS was very slow, slightly less than 250 thousand bytes per second. This could

have been improved by executing the code on the CONVEX. Unfortunately, the CONVEX C++

compiler is rather primitive. Our multi-dimensional array indexing technique was also very slow.

As this was not the focus of the research, the code was not optimized. Note that both disk access

and the tracing code were much slower than achievable; so the absolute results described here are

of no importance, only the relative times between the two different sized solutions.



Eachtrial involved tracingacertainnumberof particlesthreetimesthrougheachsolution.
Betweeneachrun within anexperiment,all of memorywasfilled with l's to insurethat nodata
remainedin memorybetweentestruns.Average,minimum,andmaximumwall clock timeswere
computed.Only minimumtimesarepresentedherebecausesystemloadinfluencedaverageand
maximumtimes.Averagetimeswereabout20%greaterthanminimumtimes.Table1containsthe
results.

Table 1:

Measure
Large

Solution

(sec,)

Small

Solution

(sec.)
Large/Small

984 particles 23.00 21.00 1.10

98 particles 4.00 3.00 1.33

98 particles/CPU only 2.72 2.44 1.11

98 particles/non-CPU only 1.28 0.55 2.33

Time to read one solution 270.89 2.71 99.96

time step from disk

Disk IO time saved using 269.21 2.16 NA

memory mapping

Tracing particles in the large solution took 10-30% longer than in the small solution. The process-

ing necessary for each particle should be identical, so where is the difference coming from? Notice

that non-CPU time is 2.33 times longer for the large solution. This suggests that the particles in the

large solution pass through more cells; i.e., the grid is denser. Still unexplained is the 11% differ-

ence in CPU time between the large and small solutions. Remember that the solutions are on mul-

tiple overlapping curvilinear grids. The unexplained 11% might reflect more particles in the larger

solution passing from one curvilinear grid to the next, an operation that takes some CPU time.

It should be noted that workstation memory was full when the read tests were conducted, so the

times reflect paging data out as well as reading solution data in. This is realistic for unsteady visu-

alization. A full disk read took 100 times longer for a large solution, as one would expect given the
difference in sizes.

Discussion

Calculating a set of 1-D paths through a 4-D solution is clearly well suited to the optimizations dis-

cussed in this paper. Cutting planes and other techniques that access only a portion of the solution

should also benefit. However, many visualization techniques, such as volume rendering, marching

cubes [Lorenson87] isosurface calculations, and critical point finders [Helman90] must access

every data point in a solution and will not benefit from the optimization approach presented here.

In this work there is no attempt to remember the values calculated by lazy evaluation. In many

cases this would improve performance. This area could benefit from additional research.



Summary

Using memory mapped files and lazy evaluation of derived fields, particle tracing from disk resi-

dent solutions can be O(number-of-particles) rather than O(number-of-solution-nodes). In most

cases, these optimization techniques provide much faster particle tracing than reading the entire

solution into memory and calculating derived fields over the entire solution domain before panicle

tracing begins.
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